JROBOT

ROBOT

AVRcam Code Commentary

Version 1.3

Copyright © JROBOT 2007

JROBOT

Revision History

JROBOT

Date Version Author Description

2/15/2007 1.0 John Orlando | Initial release

2/22/2007 1.1 John Orlando | Added sections for User Interface and Color
Tracking Logic.

3/3/2007 1.2 John Orlando | Completed the Color Tracking Logic section,
and added the Frame Dump section. Also
added additional details throughout.

4/26/2007 1.3 John Orlando | Corrected a minor error in the Frame Dump
section, where currentLineBuffer and
previousLineBuffer were flipped around

References

[1] AVRcam User’s Manual http://www.jrobot.net/Download.html
[2] OV6620 image sensor data sheet http://www.ovt.com

JROBOT

http://www.ovt.com/
http://www.jrobot.net/Download.html

JROBOT

1 Introduction

1.1Overview

The AVRcam is a small image processing system capable of performing real-time object
tracking of eight different colored object simultaneously, at 50 frames/sec. This system
is also capable of capturing individual snapshots of its surroundings.

1.2Scope

This document is intended to provide a detailed description of how the AVRcam
embedded software works. It is divided into logical sections covering the different
aspects of the software:

» Initialization-This section covers the sequence of events that take place when
power is first applied to the system. This includes the functionality of the Atmel
AVR tiny12 on-board co-processor as well as the startup of the Atmel AVR
megas.

* Event Loop/Dispatcher-This section covers the basics of the event loop and
corresponding infrastructure that is used to publish and process events in the
system.

* User Interface-This section covers the user-interface provided by the AVRcam
through the serial port. It includes the interface to the UART hardware, as well as
the command parser responsible for processing the input.

* Color Tracking Logic-This section covers the processing that is done to track
colorful objects. It includes the order of events for interfacing to the OV6620
image sensor to read its data bus, determine if a particular set of sampled pixels
corresponds to a color of interest, and run-length encoding the packet. It also
covers the processing necessary to build connected regions of colored objects, and
send the results out through the user-interface.

* Frame Dumping Logic-This section covers the processing that is done to capture
a single frame and send the corresponding image out through the user-interface.

JROBOT

JROBOT

The basic architecture of the embedded software executing on the mega8 can be found in
Figure 1. It is assumed that the reader is already familiar with the general functionality of
the AVRcam, as well as the hardware involved in the system. Introductory information
on the AVRcam can be found in the AVRcam User’s Manual located at:

www.jrobot.net/Download.html

| »| Color
M -
van_ | Current |
User-Interface Camera | Line |
Manager —»——— —
4> Executive L Interface | Previous |
¢ ’ | Line |
UART i Frame
Manager
Interface Camera
Configuration
j ¢ Manager .
[_| [_| + Tracked |
-——
| | | | Object |
| UART | | UART | - | 2c | Tahle |
rx FIFO tx FIFO > -
| | | | Interface cmd |
| | | FIFO
- S — L _| -
KEY: Class | Major data |

Figure 1: Software architecture of the AVRcam

JROBOT

structure

http://www.jrobot.net/Download.html

JROBOT

2 Initialization

2 1Files involved:

AVR tiny12 - AVRcam_tiny12.asm
AVR mega8 - main.c, FrameMgr.c, Camlnterface.c, UIMgr.c, UartInterface.c,
CamConfig.c, Debuglnterface.c

2.2Description

The initialization of the AVRcam actually spans across two different processors. In
addition to the primary processor (AVR mega8), a small secondary processor (AVR
tiny12) is also utilized. The tiny12 is responsible for some initial configuration of the
system (described below) that must take place before the mega8 can start up.

2.2.1AVR Tiny12 Initialization

At power up, the tiny12 holds the mega8 in reset by asserting the mega8’s /RESET line.
This provides a window of time for the tiny12 to perform two important operations. The
first operation is to send an I2C command to the OV6620 image sensor to force it to tri-
state its Y/UV data busses. This is necessary because the UV pixel data bus on the
OV6620 interfaces to the mega8 through the same i/o lines needed for reprogramming
the mega8. Thus if the user attempted to reprogram the mega8 while the OV6620 was
driving its UV bus, the reprogramming operation would fail. The OV6620 image sensor’s
UV data bus interfaces to the mega8 through the lower four bits of PORTB. The critical
line that must be tri-stated is bit 3 of PORTB, which is the MOSI line.

This tri-stating operation is completed after the tiny12 performs an 12C write to address
0x13 of the OV6620’s register set, with a value of 0x05 (see [2] for the OV6620’s
complete register set).

The second operation handled by the tiny12 at power up is the sending of an [12C
command to the OV6620 to force the image sensor to output its 17.7 MHz crystal
oscillator signal on its FODD line. This output signal is available on the 32-pin header
provided by the C3088 camera board, and thus can be accessed easily. But why is this
necessary?

The AVRcam is designed around the concept of synchronized clocking of both the image
sensor and the primary processor. In other words, the OV6620 and the mega8 need to
share the same clock in order to perform the necessary streaming image processing in
real-time (see the Color Tracking Logic and Frame Dump Logic sections for the details
of why this is necessary).

JROBOT

JROBOT

The C3088 camera board (which utilizes the OV6620 image sensor) has a 17.7 MHz
oscillator already built into it that is used as the clock source for the OV6620. To make
the AVRcam work, this 17.7 MHz oscillator signal needs to be available so that the
mega8 can also utilize it as its clock source. However, by default, this clock signal is not
externally available on any of the header pins of the C3088. Thus, the tiny12 takes care
of sending the necessary I2C command to the OV6620 so enable the gating of the
oscillator signal to an output line. This output line is connected directly to the mega8’s
XTALI line. Once configured, the mega8 has the synchronized clock source that it
needs.

This activity is completed after the tiny12 performs an 12C write to address Ox3F of the
OV6620’s register set, with a value of 0x42 (see [2] for the OV6620’s complete register
set).

After these two I2C write operations are completed, the tiny12 de-asserts the /RESET
line of the mega8, allowing it to start up. The tiny12 then sits in an infinite loop doing
nothing as the mega8 begins its processing.

2.2.2AVR mega8 Initialization

The mega8 begins execution in main.c in its main() routine. The first order of business
here is to initialize the various modules utilized in the system. It first calls
Debuglnt_init() in Debuglnt.c, which causes the yellow debug LED on the AVRcam to
blink four times to indicate that the system is about to power-up. Note that the UV data
bus of the OV6620 is still tri-stated at this point, due to the earlier request from the
tinyl2. This is to provide a four-second window of time to allow the mega8 to be re-
programmed if desired by the user. Once the four blinks have completed, the
Debuglnt_init() routine returns.

Next, the UartInt_init() function is called in UartInt.c. This function is responsible for
setting up the on-board UART to operate at 115.2 kbps, 8 data bits, 1 stop bit, no parity.
This UART provides the main user interface to the system.

The initialization of the I2C interface on the mega8 occurs next, through a call to
12Cint_init() routine in I2Cint.c. This routine is responsible for setting up the on-board
I2C hardware so that it is capable of acting as an I2C master utilizing the slower 100 KHz
I2C timing. There is no specific reason to use 100 KHz compared to the more common
400 KHz; it simply worked right from the start and was never worth modifying.

Once the 12Cint_init() routine has completed, the CamInt_init() routine in Camlnt.c is

called to initialize the Camera Interface module. This routine is responsible for setting
up the hardware needed to interface to the OV6620 image sensor. The interface between

JROBOT

JROBOT

the OV6620 and the mega8 consists of 12 signals (see the hardware block diagram in
Figure 2):

HF

6-18 Volt input

5 Vaolt egulatar
In-Circuit
Programming

i | ATmega8 <—T

VT I _j; o :t::_]

pixel bus + PCTPC4 l in EEPROM I
O Sl S 2

R5232
V L vvruva + PET-PE4 UART tx P Leve —»
4] pixel bus UART < Lo Y Converter [—
&8 5 (ootional)
— vSYNC —— ExtINTO
2 i\ e e >
0o — HREF ——»f ExtINTY |r Tracksd0bjzctTable I
siored in RAM
| o =) ThEEME Lo T no >
Counter GPIO (1}
Fy
l 7wl 12C Rezet
P Debug
LED

ATtiny12

Ll 20 GPIO
—id

Figure 2: AVRcam Hardware Block Diagram

VSYNC-This signal, short for vertical synchronization, is an output from
the OV6620 sensor, indicating each time a new image frame is about to
begin. It goes high and then low at the beginning of each frame. This
signal is connected to pin 4 of the mega8 which is the INTO external
interrupt line. Camlnt_init() configures this interrupt so that it is a rising-
edge interrupt, and enables it immediately:

/* set up External Interrupt@ to interrupt us on rising edges

(VSYNC) */
MCUCR |= (1<<ISCO1) | (1<<ISCOO@);/* rising edge interrupt */
GICR |= (1<<INTO); /* interrupt request enabled */

JROBOT

JROBOT

HREF-This signal, short for horizontal reference, is an output from the
OV6620 sensor, indicating each time a new row of pixels is about to be
sent out from the camera. It goes high and then low at the beginning of
each image line. This signal is connected to two input pins on the megas.
The first input is the INT1 external interrupt line. CamlInt_init()
configures this interrupt so that it is a rising edge interrupt, but doesn’t
enable it yet:

MCUCR |= (1<<ISC11l) | (1<<ISC1l0); /* rising edge interrupt */

The HREF signal is also connected to pin 6 of the mega8, which is the
input to a hardware timer/counter (TIMERO). This allows the hardware
timer/counter to keep track of the number of times the HREF signal
toggles, and thus the count of image lines in the current frame. When
configured properly, this counter will overflow and generates an interrupt
after it has counted 144 pulses on the HREF line, thus indicating the end
of a frame (details of this configuration can be found in the Color
Tracking Logic section).

/* set up TimerO to count and be clocked from an external pulse
source(HREF) on falling edges...eventually, we need to enable the
interrupt for this! FIX THIS */

TCCRO = (1<<(CS02) | (1<<(CS0O1) | (0<<CS0O0);

Note: The “FIX THIS” comment in the current release references a fix that
has already been implemented.

PCLK-This signal, short for pixel clock, is an output from the OV6620. It
is asserted when valid pixel data is available on the Y and UV data busses.
When being used in the AVRcam, this corresponds to toggling 176 times
per image line. This signal is connected to pin 11 of the mega8, which is
the input to the hardware timer/counter TIMER1. Much like TIMERO
counts HREF pulses, TIMERT1 is setup to count PCLK pulses and
overflow the counter after 176 have been received. This overflow will
trigger an internal counter overflow interrupt, indicating that the line of
pixel data is over. TIMERI1 is configured here, but the interrupt is only
enabled when it is needed:

/* ensure that timerl is disabled to start...eventually, when PCLK
needs to feed timerl through the external counter, it will be
enabled on an "as needed" basis...*/

TCCR1B &= ~((1<<(CS12)|(1<<CS11)|(1<<CS10));

Y/UV Data Busses-These are the two 8-bit output data busses provided
by the OV6620. These data busses carry the actual pixel information,
synchronous with the PCLK signal. Only the top 4-bits of each data bus is

JROBOT

JROBOT

connected to the mega8 to simplify the processing. The top 4-bits of the Y
bus are connected to the lower 4-bits of PORTC on the mega8, and the top
4-bits of the UV bus are connected to the lower 4-bits of PORTB on the
megag.

It is necessary to setup PORTB and PORTC so that they are inputs (Note:
the AVRcam code references the Y port as the CAM_RB_BUS and the
UV port as the CAM_G_BUS, since the OV6620 is used in RGB mode
instead of YUV mode. The OV6620 will later be configured such that
only red and blue pixel values are sent on the CAM_RB_BUS and only
green pixel values are sent on the CAM_G_BUS...see the Color Tracking
Logic section for more details):

CAM G BUS DIR &= OxFO; /* 4-bit G bus all inputs */
CAM G BUS DIR |= OxF0; /* disable the pull-up on PB4 and PB5 */
CAM RB BUS DIR &= OxFO; /* 4-bit RB bus all inputs */

The last thing the CamlInt_init() routine does is setup its colorMap table. This colorMap
serves as the means to determine if a particular set of received red/green/blue pixel values
sampled over the OV6620’s data busses maps to one of the eight user-configured colors.
This is one of the most confusing parts of how the AVRcam performs its processing, so
some extra explanation is provided.

For purposes of tracking color blobs, the user must be able to provide the AVRcam with
the colors of interest to track. But how are colors represented by the OV6620 camera
module? Colors are represented as combinations of red, green, and blue pixels, where
each pixel is an 8-bit value (in reality, the OV6620 only represents pixel values with a
minimum value of 10 and a maximum value of 240, but for all practical purposes the
pixels should be considered to be 8-bit values). Each image frame sent out by the
0OV6620 is configured as a 176 pixel by 144 pixel grid providing the following pixel
arrangement:

1 2 |3 4 5 6 7 8 176
Line 1 G G |G G G G G G G G
Line 2 R B |R B R B R B R B
Line 3 G G |G G G G G G G G
Line 4 R B |R B R B R B R B
Line 144 | R B |R B R B R B R B

Figure 3: Pixel arrangement for each image frame sent from the OV6620

Note that the above pixel grid is similar to a Bayer color pattern, but slightly modified.
In a typical Bayer color pattern, the odd image lines would alternate red and green pixels,

JROBOT

JROBOT

while the even image lines would alternate green and blue pixels. The OV6620 is
specifically configured to this alternate Bayer formation by the AVRcam, where only
green pixels are provided on the odd lines, and alternating red and blue pixels are
provided on the even lines. There is a reason for this, and will be explained in the
Tracking Color Logic section.

Individual colors in an image are represented by varying the values of red, green, and
blue for the particular area of the color. Its possible to represent a wide variety of colors
by looking at a four-pixel region comprised of red, green, and blue values (as shaded in
the above table...note that there are two green values: they can either be averaged
together to come to the best estimation of green for the region, or more simply, only
utilize one of them and ignore the other one).

But how does a user specify a color of interest for purposes of tracking? This is
accomplished by specifying a range of red, green, and blue values that should be
associated with a particular color of interest. For example, a color of interest may be
represented when the red pixel value is between 64 and 96, the green pixel is between 16
and 32, and the blue pixel is between 192 and 240. This would correspond to a darkish-
purple color. Any time a connected region of three pixels meets the above criteria, it is
considered a color of interest. So, it really comes down to accurately representing these
color ranges, and then efficiently figuring out if a particular set of red/green/blue pixels
maps into any of the colors of interest.

This is where the colorMap comes in. The colorMap is a 48-byte chunk of memory that
should really be viewed as follows:

Bytes Bytes Bytes
0-15 16-31 32-47

Redl | Greenl | Bluel Range: 0-15
Red2 | Green2 | Blue2 Range: 16-31
colorMap is 48 contiguous Red3 | Green3 | Blue3 Range: 32-47
bytes, where the Red4 | Greend | Blued Range: 48-63
RED_MEM_OFFSET is Red5 | Green5 | BlueS Range: 64-79 Color value range
set to 0, the Red6 | Green6 | Blue6 Range: 80-95
GREEN_MEM_OFFSET Red7 | Green7 | Blue7 | Range: 96-111
is set to 16, and the Red8 | Green8 | Blue8 Range: 112-127
BLUE_MEM_OFFSETis | "Req9 | Green9 | Blue9 | Range: 128-143
set to 32: Red10 | Greenl0 | Bluel0 | Range: 144-159
Redl11 | Greenll | Bluell Range: 160-175
Red12 | Greenl2 | Bluel2 | Range: 176-191
Red13 | Greenl3 | Bluel3 Range: 192-207
Red14 | Greenl4 | Bluel4 | Range: 208-223
Redl15 | Greenl5 | Bluel5 Range: 224-239
Red16 | Greenl6 | Bluel6 Range: 240-255

JROBOT

JROBOT

For representing a single color, a single bit in each byte is assigned to represent the color
in the colorMap. The AVRcam can track up to eight colors simultaneously. Each user-
defined color influences only a single bit in each of the 48 bytes in the colorMap.

This is best explained by an example. To represent a single color mapped to the most-
significant bit of each byte in the colorMap (for example, lets use the purple color
mentioned above, represented when the red pixel value is between 64 and 96, the green
pixel is between 16 and 32, and the blue pixel is between 192 and 240), the following
colorMap would be setup:

0x00 | 0x00 0x00 Range: 0-15
0x00 | 0x80 0x00 Range: 16-31
0x00 | 0x00 0x00 Range: 32-47
0x00 | 0x00 0x00 Range: 48-63
0x80 | 0x00 | 0x00 Range: 64-79 |4 | Color value range
0x80 | 0x00 0x00 Range: 80-95

0x00 | 0x00 0x00 Range: 96-111

0x00 | 0x00 0x00 Range: 112-127
0x00 | 0x00 0x00 Range: 128-143
0x00 | 0x00 0x00 Range: 144-159
0x00 | 0x00 0x00 Range: 160-175
0x00 | 0x00 0x00 Range: 176-191
0x00 | 0x00 0x80 Range: 192-207
0x00 | 0x00 0x80 Range: 208-223
0x00 | 0x00 0x80 Range: 224-239
0x00 | 0x00 0x00 Range: 240-255

Notice that the MSB of certain bytes in the above table has been modified, since this bit
is allocated to hold the red/green/blue color ranges for the first color. Each additional
color to be tracked is mapped to another bit in each byte in the colorMap.

Eventually, this colorMap will serve a key purpose in the on-the-fly image processing
that needs to be done to determine if a particular red/green/blue sample of pixels
correlates to a user-defined color of interest. This will be discussed further in the
Tracking Color Logic section.

Back to the Camlnt_init() function. The colorMap is actually loaded from EEPROM
located in the mega8 as the last function in the Canlnt_init() routine. Each time the user
configures a new colorMap, it gets written to EEPROM and is thus maintained between
power cycles.

JROBOT

JROBOT

Once Camlnt_init() has completed and returned, the main() routine globally enables

interrupts.

Next, the CamConfig_init() routine is called in the CamConfig.c file. This routine is
responsible for configuring the OV6620 image sensor. This configuration process
requires the mega8 to write to several of the registers in the OV6620 via I2C commands.
In particular, this routine performs the following register updates (see [2] for the

complete details of the registers provided by the OV6620):

Register Address

New Value

Reason

Ox14

0x20

Reduces the frame size from
the default of 352x288 to
176x144.

0x39

0x40

Gate PCLK with HREF so
that PCLK is only active
when valid pixel data is
being provided. This is
needed because PCLK is
feeding a hardware counter
in the mega8, and we only
want it counting when valid
data is being received.

0x12

0x28

Change from the default
YUYV colorspace to RGB
colorspace, and disable the
auto-white balancing since
it can change the hue of the
received color in
unexpected ways.

0x28

0x05

Setup the color sequencer in
the image sensor so that the
odd image lines contain just
green pixel values, and the
even pixel lines provide
alternating red and blue
pixel values.

0x13

0x01

Un-tri-state the pixel data
busses to allow the pixel
data to flow. These were
previously tri-stated to
allow for in-system re-
programming of the mega8
during power up.

JROBOT

JROBOT

Finally, these commands are queued up and sent down to the OV6620 image sensor via
the I2C bus. Once this is completed, the CamConfig_init() function returns.

The next module to initialize is the user-interface manager, located in UIMgr.c. The
function responsible for initializing this module is UIMgr_init(). This routine resets a
few of the critical variables needed for the UIMgr to function properly, and then returns.

The final module requiring initialization is the frame manager, located in FrameMgr.c.
The init routine is FrameMgr_init(), and simply does some memory initialization of the
trackedObjectTable data structure. This data structure is used to keep track of up to eight
tracked objects. The per-tracked-object data include the color of the object, interim
parameters to track the minimum and maximum x-coordinates of the tracked object, the
(x,y) coordinates of the upper left corner of the object, and the (x,y) coordinates of the
lower-right corner of the object.

Once FrameMgr_init() completes its initialization, a final one-second delay in main()
provides a short window of time to allow the OV6620 to stabilize. After this, the system
is fully initialized, and a call to Exec_run() starts the event processing loop. This loop
provides the processing for all published events in the system, and doesn’t ever return.

3 Event Loop and Processing

3.1Files Involved:

AVR mega8 - Executive.c, Executive.h, Events.h

3.2Description

The AVRcam uses a very simple event processing loop for handling events that occur in
the system. This processing loop is provided by the Exec_run() routine in Executive.c.
The complete enumeration of all events in the system can be found in Events.h.

The Exec_run() routine processes two different types of events. The first type of event is
a “fast-event”, meaning that this event must be processed as quickly as possible. These
events require higher-priority processing due to the real-time requirements of setting up
and processing each image line as it is streaming in from the OV6620 image sensor.
There are two types of “fast events™:

* FEV_ACQUIRE_LINE_COMPLETE: This event indicates that an
image line (a total of 176 pixels) has been sampled and run-length
encoded. This run-length encoded version of the image line can then be
processed to determine if there are any colors present in the image line
that are connected to the image line that preceded it. This processing is
performed in FrameMgr_processLine(), located in FrameMgr.c In

JROBOT

JROBOT

addition, after each image line is acquired and processed, the UIMgr is
given a chance to transmit a single byte out through the UART. Normally,
the UIMgr will have data pending in a transmit FIFO corresponding to the
tracked objects found during the previous frame. Using this method of
sending one byte out at the end of processing each image line, it is
possible to send up to 144 bytes out per frame (at 115.2 kbps), allowing
the mega8 to continue its processing while the hardware UART performs
its transmission.

e FEV_PROCESS_LINE_COMPLETE: This event indicates that the
processing of an image line has been completed, and the system should
setup to process the next line of the image. It calls the
FrameMgr_acquireLine() routine which actually performs the setup.

It should be noted that there is no mechanism in place to queue up multiple “fast events”.
These events are logged by a simple bitfield (fastEventBitmask). The event has either
occurred or not, indicated by a particular bit in fastEventBitmask being set.

The second type of event in the system is a “normal event”. The majority of the events in
the system are of this type. The simple executive provides an event FIFO that can queue
up to eight events (defined in Events.h), and must be a power of 2. Events are
“published” and added to the event FIFO through a call to Exec_writeEventFifo(), and
these events are added from a variety of different spots throughout the system.

These “normal events” correspond to all sorts of different things that can happen in the
system, such as receiving serial data from the user-interface UART, or having received
and decoded a command from the user such as enable-tracking. Each event has a specific
list of routines associated with how the event should be processed. The enumeration of
the processing routines for each event in the processing loop is a crude way of providing
a set of “subscribers” for the different events in the system. Each processing routine is
responsible for checking the current state of the system to determine how the event
should be processed.

4 User Interface

4.1Files Involved:
AVR mega8 — UIMgr.c, Uartlnterface.c, Events.h

4.2Description

The AVRcam provides a user-interface through the mega8’s on-board hardware UART.
This UART provides a means to receive and send serial data with an external controller.
The AVRcam supports a very simple set of commands from the external controller.

JROBOT

JROBOT

These commands are sent to the AVRcam as simple carriage-return-terminated text
strings, such as “GV\r”. The complete set of commands can be found in [1].

The processing provided by the user-interface is initiated each time a serial byte is
received from the UART on the mega8. Whenever a serial byte is received, the
SIG_UART_RECY interrupt service routine is called (located in UartInterface.c). This
routine adds the received byte to the UIMgr’s receive FIFO, and then publishes an
EV_SERIAL_DATA_RECEIVED event by writing directly to the executive’s event
FIFO.

Once the serial receive ISR is completed, the main Exec_run() processing loop will first
dispatch the EV_SERIAL_DATA_RECEIVED event to the UIMgr. The
UIMgr_dispatchEvent() function checks the received event to determine what action to
take. If serial data was received, it calls UIMgr_processReceivedData(). This routine is
responsible for processing each incoming serial byte to determine if it is a recognized
command. The actual processing depends on what character was received. Incoming
characters are built into space-delimited tokens (where the incoming characters are
temporarily stored in asciiTokenBuffer), and groups of tokens are built into a token list
(stored in tokenBuffer).

Since all valid commands end in a ‘\r’ character, the reception of this character is the
trigger to perform the command processing. The first step in this processing is to
determine if the command was valid. If an invalid command was received, a negative-
acknowledge message is sent to the user, and the EV_SERIAL_DATA_PENDING event
is published to send out the serial data associated with this message. If the received
command is valid, and acknowledge message is sent to the user, and
UIMgr_executeCmd() is called to execute the command.

The UIMgr_executeCmd() routine can perform several different actions based on the
received command. The following table shows the received commands and their
associated actions:

Received Command Action

PingCmd Do nothing, as the already-sent ACK is sufficient
GetVersionCmd Report the software version string programmed into the AVRcam.
ResetCameraCmd Reset the camera (Note: This command is not currently

implemented, as the resetting of the OV6620 would cause the
clock signal needed by the mega8 to stop.

DumpFrameCmd Generate the EV_DUMP_FRAME event, which will be
processed by the main executive to begin the dumping of a single
image frame.

SetCameraRegsCmd | Take the set of 12C register addresses/data sent as part of the
command, and send them to the OV6620 to update its internal
registers.

JROBOT

JROBOT

EnableTrackingCmd | Start color blob tracking by publishing the
EV_ENABLE_TRACKING event, which will be processed by
the main executive to begin color tracking based on the current
colorMap.

DisableTrackingCmd | Stop color blob tracking, which will cause the system to go back
to the idle state.

SetColorMapCmd Update the colorMap data structure with the new colorMap
passed in by the user. This also updates the version of the
colorMap maintained in EEPROM.

There are a few additional functions in UIMgr.c that support the processing of
commands, but these are fairly self-explanatory.

5 Color Tracking Logic

5.1Files Involved:
AVR mega8 — FrameMgr.c, Camlnterface.c, CamInterfaceAsm.S, UIMgr.c, Executive.c

5.2Description

The color-tracking capability is the primary functionality provided by the AVRcam. The
system provides the user with the ability to track up to eight different objects of up to
eight different colors, at the full 50 frames/sec provided by the OV6620.

The color tracking feature begins when the system publishes the
EV_ENABLE_TRACKING event after it receives the “ET\r” command from the user.
The EV_ENABLE_TRACKING event is dispatched to the FrameMgr, where it sets a
local state variable to ST_FrameMgr_trackingFrame and calls FrameMgr_acquireFrame.
The FrameMgr_acquireFrame() function is called to start the acquisition and processing
of an image frame based on the next time the VSYNC line asserts itself. This function
first resets a few of the critical data structures used while processing the frame, and then
calls the macro WAIT_FOR_VSYNC_HIGH(). This macro, defined in CamInterface.h,
sits 1n a tight loop waiting for the VSYNC line to assert itself indicating that a frame is
about to begin. Once this line asserts, the CamIntAsm_acquireTrackingLine() function is
called, passing in a pointer to a buffer to be used for storing a line of run-length encoded
pixels, as well as a pointer to the colorMap.

The CamIntAsm_acquireTrackingline() routine is written in assembly due to the fact
that it needs to execute according to a very specific timing profile. It must complete the
processing of each incoming pixel in a fixed number of clock cycles to ensure that it is
ready to process the next pixel. There is no time between pixels to read the PCLK signal
(normally used to indicate valid data on the pixel data busses), so executing in lock-step

JROBOT

JROBOT

with the clock source for the image sensor is critical. This is why the OV6620 and the
mega8 share the same clock source. In addition, there is no time between pixels to
determine if a sufficient number of pixels have been received to indicate the end of an
image line. Thus, the PCLK signal from the OV6620 is connected to the TIMER1
hardware timer/counter, which is pre-loaded to generate an interrupt after a complete line
of pixels has been received (176 in total).

Ok...on to the code. The first thing CamIntAsm_acquireTrackingLine() does is to check
the state of the “T” flag. This is a bit obscure, and is strictly not needed as a first step any
longer. The “T” flag is a (typically unused) bit in the mega8’s SREG register that was
originally being used as a flag in the system to indicate any time a serial byte was
received during the time-critical portions of the acquireTrackinglLine() routine. If a serial
byte was received, the associated serial-received interrupt would cause a hiccup in the
processing and would thus trash the entire line of image data. However, this required the
serial-receive ISR to be written in assembly language, due to the necessary setting of the
“T” flag (GCC was resetting this bit otherwise), and was somewhat difficult to follow.
Thus, the serial-receive ISR was moved over to C, and if serial data is received during a
frame it immediately causes the frame-processing to end (by publishing the
EV_PROCESS_FRAME_COMPLETE event to force the system to wait for the new
frame...see FrameMgr_dispatchEvent() for more details).

The remaining processing can be best described in a flow chart, broken up into four
distinct steps:

JROBOT

Step 1

Step 2

Step 3

Step 4

JROBOT

Wait for VSYNC to assert

v

Set up the pointers to the

HREF wakes the system up

currentLineBuffer, set up the initial
pixel-run, point the Y and Z index
registers to the color map, enable
the HREF interrupt and sleep until

v

to extract redLookup

Read the UV bus (red pixel), and
use it to index into the red color map

v

map to extract greenLookup

Read the Y bus (green pixel), and
use it to index into the green color

v

Read the UV bus (blue pixel) and

Must use it to index into the blue color
Coir:slgte map to extract blueLookup
clock +
cvcles
Color = redLookup & greenLookup &
blueLookup
Has the YES
pixel count Close out last
overflow run-length
occurred?
ooy
Color == LastColor? Exit
YES
Add new entry to run-length line
Must
complete +
in16
clock Set LastColor = Color
cvcles

v

Waste cycles until the pixel block ends

JROBOT

JROBOT

There are a few important details to point out here for each of the above steps:

Step 1-The system originally went to sleep waiting for VSYNC to assert. This has since
been updated with a simple loop continually checking when VSYNC went high, as noted
previously.

Step 2-This initialization is important, and must complete before the HREF line asserts
indicating the pixel data for the line is about to start. This initialization clears out
pixelCount, loads a value of 0x50 into pixelRunStartInitial so that it overflows after 176
pixels have been received (this is then loaded into the initial value of the TIMER1
hardware counter), sets up the X index pointer to point to the passed in buffer where run-
length encoded color data will be stored, and loads the Z index pointer to point to the
beginning of the colorMap data structure. Note: it is important that the colorMap data
structure be located on a 256-byte boundary. This allows for fast indexing into the
colorMap by simply loading the lower-byte of a sampled pixel into the lower byte, thus
providing a direct index into the colorMap without any further manipulation. This is
enforced by an optional linker-flag in the makefile, as well as an explicit declaration of
the colorMap starting address at the top of CamlInterface.c

Next, TIMERI is enabled to start counting the external PCLK pulses, and interrupt after
176 pixels are counted. The interrupt associated with the assertion of the external HREF
line is then enabled. This will cause an interrupt to occur when the HREF signal goes
high, indicating that a line of pixel data is about to start. Once enabled, the mega8 goes
to sleep, only to be woken up by the assertion of HREF. When HREF is asserted, it takes
fourteen clock cycles to process the interrupt, which does nothing but simply return. This
sleep-until-woken-up method is the only way to provide a guaranteed time delay between
when the HREF signal asserts and when code begins processing. If the code just sat in a
tight loop checking the status of the HREF line, there could be up to three clock cycles of
uncertainty as to when the HREF line asserted, which is simply too much in a system
when the remaining portion of the routine is critically timed.

Step 3-Once woken up by HREF, the associated interrupt is disabled since it is no longer
needed. A few NOPs are added in to provide two clock cycles worth of delay. This brief
delay is used to line up the rest of the processing that is about to occur to ensure that the
sampling of the pixel busses is happening when valid data is present. Note: At no point is
the PCLK line checked to determine if the data is valid or not (as would normally be
done in a synchronously clocked system). It is assumed that since the OV6620 and the
mega8 have the same clock source, the two run synchronously, and that it is sufficient to
simply utilize the instruction cycle timing to determine when valid data is available on
the pixel data busses. It should also be noted that the fourteen clock cycle delay, along
with the NOPs, cause the processing to actually skip the first few pixels in each line.

JROBOT

JROBOT

This effectively reduces the line width slightly (from 176). However, the PCLK signal is
feeding the TIMER1 hardware even while the wake-from-sleep ISR is running, and thus
maintains an accurate pixel count.

After the NOPs, it is time to start sampling pixel data. First, a red pixel value is sampled
into the lower byte of the Z index pointer, followed by a green pixel value being sampled
into the Y lower byte of the Y index pointer. These two samples are for the same PCLK
pulse. It is necessary to clear out the upper-nibble of the Y index pointer since the upper
nibble overlaps with the I2C hardware bus, and is not associated with the pixel data.
Once cleared, the Z index register plus the RED_MEM_OFFSET (0) is used as a pointer
into the colorMap to extract the red value in the colorMap that maps to the sampled red
pixel. The “color” variable is used to hold this initial value read from the colorMap.
Once completed, a blue pixel is sampled from the pixel data bus and written directly into
the low byte of the Z index register, since it is now available. This corresponds to the
next PCLK cycle. Then, the Y index register plus the GREEN_MEM_OFFSET (16) is
used as a pointer into the colorMap to extract the green value in the colorMap that maps
to the sampled green pixel. The extracted value is written into the greenData variable.
Finally, the Z index register is used again to index into colorMap, although this time it
has a blue pixel in it, so the offset into colorMap is the Z index register plus the
BLUE_MEM_OFFET (32). The extracted value is written into the blueData variable. A
logical AND operation is then performed between the “color” variable (currently holding
the extracted red value from the colorMap), the greenData, and the blueData. Once this
AND operation is completed, the color variable will be left with either no bits set,
indicating that the sampled red/green/blue triplet didn’t map to any color in the colorMap,
or with one bit set, indicating that the red/green/blue triplet did map to a color. The bit
position that is set indicates which of the eight colors matches the triplet. Note: It is up to
the user to ensure that the colorMap doesn’t result in more than one bit set after a logical
AND operation of a value in the red-section, a value in the green-section, and a value in
the blue-section of the colorMap. The AVRcamVIEW PC software automatically
verifies this when entering in a color map, and notifies the user if there is an error.

Before proceeding, the routine checks to see if the “T” flag is set in the mega8’s status
register. The “T” flag is set if an ISR was serviced during this loop (the only ISR we care
about at this point is the TIMER1 overflow interrupt, or SIG_OVERFLWI1 located at the
end of CamlInterfaceAsm.S, indicating that 176 pixels have been sampled and thus the
line is complete...if the “T” flag is set, the _cleanupTrackingLine routine is called, which
does a bit of housekeeping and returns).

It should be noted here that the above color-mapping takes 10 clock cycles, which
effectively causes the next pixel block to not be sampled. Thus every other four-pixel
block of pixels is processed. Note that this doesn’t throw off the actual counting of pixels
in the line, since this is performed by the TIMER1 hardware counter. But it does reduce
the effective accuracy of each tracked object from two pixels to four pixels.

JROBOT

JROBOT

Back to the processing loop. If the color we just found is the same as the last color, the
system loops back to start reading the next set of pixels, since we aren’t starting a new
run-length. Otherwise, if it is different, Step 4 is executed, where we need to create an

entry in the run-length with the appropriate number of pixels and the new color. This

activity will cause the next set of red/green/blue pixels to be passed over for processing

since the megas8 is busy recording the run-length change information, but PCLK will

continue to increment the TIMER 1 counter since this is all done in hardware. Once the

run-length updating is complete, the whole sampling of the next set of red/green/blue

pixels starts again.

Eventually, the TIMERT1 interrupt will overflow, triggering the SIG_OVERFLOW1

interrupt handler. This handler sets the fast-event FEV_ACQUIRE_LINE_COMPLETE

to indicate to the executive that a complete line has been received and run-length
encoded. This handler also sets the “T” flag to indicate, as mentioned above, that 176
pixels have been mapped into colors and run-length encoded, and its time to process
them. After exiting the ISR, the “T” flag being set will cause a jump to the _cleanUp

routine, which disables the TIMERT1 interrupt from occurring (it will be re-enabled when

we start the next line of processing), and finally returns back to the

FrameMgr_acquireFrame() routine that initially called it.

After each image line is processed, a run-length encoded data structure
(currentLineBuffer) is populated and is passed back to the FrameMgr_acquireFrame().
This data structure has the following form:

Colorl

Run-length 1 Color2

Run-length 2

Color3

Run-length 3

Where each “color” has either one-bits set (indicating which of the eight colors is

represented by the run-length) or no bits set (indicating the run-length didn’t map to any
color in the colorMap. The “run-length” is the number of consecutive pixels in the line

which contain the color. This currentLineBuffer is simply a global array of bytes
(declared in CamlInterface.c), and thus can be easily processed by the FrameMgr.

After the FramgeMgr_acquireFrame() routine completes, the FrameMgr_dispatchEvent()
routine returns back to the main Exec_run() processing loop. Recall that the completion

of an image line generated a FEV_ACQUIRE_LINE_COMPLETE event, which will

now be processed by the Exec_run() function. This function will clear the event from its
fast-event bitmask and call FrameMgr_processLine() to process the currentLineBuffer

data that was just collected.

The FrameMgr_processLine() routine can process image lines in both the “dumping-

frame” state as well as the “tracking frame” state. Since we’re in the “tracking frame”

state, the _processLine() routine calls FrameMgr_findConnectedness() to take the

currentLineBuffer data structure and see if the various colors encoded into this image line

JROBOT

JROBOT

overlap in position with any of the colors found in the previous line. It is important to
note here that the only thing that makes a difference is the currentLineBuffer data
structure and a data structure called trackedObjectTable declared at the top of
FrameMgr.c. The trackedObjectTable data structure is an array of trackedObject_t
structures. Each trackedObject_t structure contains the pertinent information for each
connected region of color that matches a color in the colorMap, including color, the start
and finish index of where the color was found in the previous currentLineBuffer, and the
x-y coordinates of the upper left and lower right corners of a bounding box that bounds
the color blob.

The _findConnectedness() routine loops through all of the run-lengths encoded into
currentLineBuffer to determine if each colorful run-length is connected to an object in the
trackedObjectTable. “Connected” is defined as any portion of a colorful run-length
overlapping its x-coordinates with the lastLineXStart to lastLineXFinish range of any
object in the trackedObjectTable. If so, it is considered connected, and the bounding box
coordinates for the already-present object are updated in the trackedObjectTable. If a
colorful run-length is found and it doesn’t overlap an already-existing object, a new entry
is added to the trackedObjectTable with the needed parameters of this new object. A
maximum of eight objects can be tracked at any one time in the trackedObjectTable.

Once the _findConnectedness() routine completes, the total trackedLineCount index is
incremented. If the trackedLineCount is equal to the total number of lines in a frame
(144), then the EV_ACQUIRE_FRAME_COMPLETE event is published, indicating that
the frame is complete. Otherwise, the FEV_PROCESS_LINE_COMPLETE event is
published to indicate that the individual line processing has ended. This completes the
processing in FrameMgr_processLine(), and returns back to Exec_run().

Since we just completed the processing of an image line, the next thing we need to do is
to check and see if any data needs to be sent out of our UART before we go back to start
sampling the next image line. The UIMgr_transmitPendingData() routine is called,
which checks to see if there is any data pending to be sent out in the UartTxFifo. If there
is, only a single byte will be transmitted by the hardware UART at 115.2 kbps. The total
time it takes to send a single byte at 115.2 kbps 1s 1/115200 * 10-bits per byte (with start
and stop bits included) = 86.8 uS, which is less than the time it takes to acquire and
process a single image line. One byte will be sent out of the UART per processed image
line, allowing for up to 144 bytes to be sent out per image frame in a very efficient
manner. Since each object in the trackedObjectTable occupies 8-bytes, and there are up
to eight tracked objects (plus a little extra overhead to frame each message), the complete
trackedObjectTable can efficiently be sent out interleaved with the processing of each
image line.

After the _transmitPendingData() routine has completed, its back to Exec_run(). Recall

that if we aren’t at the end of the image frame, the FEV_PROCESS_LINE_COMPLETE
event will be waiting to be serviced if there are remaining image lines in the frame to be

JROBOT

JROBOT

acquired/processed. This event will cause the FrameMgr_acquireLine() routine to be
called. This routine waits for the HREF line to go low (which is the normal state of the
line if it isn’t asserted), and then calls CamIntAsm_acquireTrackingLine(), which begins
the acquisition of the next processing line in the image.

After all 144 image lines have been acquired and processed, the
EV_ACQUIRE_FRAME_COMPLETE event is published. This event is processed by
the Exec_run() routine, which calls FrameMgr_processFrame(). The
FrameMgr_processFrame() routine is responsible for manually building up each tracking
packet to be sent on to the UIMgr’s Tx FIFO to eventually be sent out over the hardware
UART while the next image frame is being acquired and processed. It loops through
each object in the trackedObjectTable checking for the object’s validity, and will only
send tracking packets out for objects that are valid.

Once the tracking packet has been inserted into the UIMgr’s transmit FIFO, the
EV_PROCESS_FRAME_EVENT is published. This event is processed by Exec_run(),
dispatching it to the FrameMgr where the FrameMgr_acquireFrame() routine is called.
This completes the entire processing of each frame when in color tracking mode. This
acquisition/processing sequence continues until the user sends the “DT\r” command to
disable tracking.

6 Frame Dumping Logic

6.1Files Involved:
AVR mega8 — FrameMgr.c, Camlnterface.c, CamInterfaceAsm.S, UIMgr.c, Executive.c

6.2Description

The Frame Dumping capability of the AVRcam allows a user to request the system to
take a snapshot image, and return it to the user. The AVRcam performs this operation by
acquiring two lines at a time per image frame, over the course of 77 image frames,
sending the contents of each set of two lines over the hardware UART back to the user.
This operation takes approximately four seconds due to the 115.2 kbps baud rate of the
UART.

Frame dumping starts by the user requesting this operation by sending the “DF”
command to the system. Reception of this command will cause the EV_DUMP_FRAME
event to be published by the UIMgr. The Exec_run() routine will then dispatch this event
to the FrameMgr. The FrameMgr needs to first reduce the frame rate of the OV6620
image sensor by sending an [2C write command to register Ox11 with a new value of
0x01. This will reduce the frame rate to one-half its normal maximum frame rate. This
is necessary because it is not possible to sample and store each pixel at the maximum

JROBOT

JROBOT

frame rate. At the reduced frame rate, it takes eight clock cycles to sample and store two
pixels, which is sufficient for being able to store all the pixels in each line in real-time.

After the frame rate is reduced, the FrameMgr changes states to the “dumping frame”
state, and calls FrameMgr_acquireLine(). The _acquireLine() routine performs its
processing based on the current state. It first clears out the currentLineBuffer and
previousLineBuffer which will be used to store two individual image lines. Recall from
Figure 3 that one image line contains green pixels, and one contains alternating red and
blue pixels. The mega8 is always sampling two lines at a time, grabbing one pixel from
the “green” lines, and one pixel from the “red/blue” lines, thus sampling two image lines
for each assertion of HREF. One line of image data will be stored in currentLineBuffer
(green data), and one line of image data will be stored in previousLineBufffer (red/blue
data).

The _acquireLine() routine then waits for VSYNC to toggle, indicating that a new frame
is about to begin. Once this occurs, it is necessary to wait for HREF to toggle. However,
since we are sampling successive line-pairs in each frame, over the course of 77 frames,
it is necessary to wait for the appropriate number of HREF toggles to indicate that the
line-pair of interest is about to begin. Once the appropriate number of HREF toggles
have occurred, the CamIntAsm_acquireDumpLine() routine is called, passing in pointers
to both the currentLineBuffer and the previousLineBuffer where the pixel data from each
pair of image lines will be stored.

The _acquireDumpLine() routine performs almost identical initialization processing as
the _acquireTrackingline() routine to setup the TIMERI1 counter to count the PCLK
transitions. The only difference is that it sets up the X index register to point to the
currentLineBuffer, and the Y index register to point to the previousLineBuffer. This will
facilitate efficient writes to these buffers. The next difference in processing doesn’t occur
until the _sampleDumpPixel label in the CamInterface Asm.S file.

The _sampleDumpPixel label marks the code that actually performs the sampling of the
Y and UV data busses to grab the individual pixel data. This routine samples each pixel
data bus and stores the samples to the X/Y indexed buffers. This processing must
complete in eight clock cycles, as noted before. Once 176 pixels have been sampled, the
TIMERT1 overflow interrupt handler (SIG_OVERFLOW 1) will be called, which
publishes the FEV_ACQUIRE_LINE_COMPLETE event as well as setting the “T” flag
in the mega8’s status register. The setting of the “T” flag causes the pixel-sampling loop
to exit, and for the code at _cleanUpDumpLine to execute. This disables the external
clocking of the TIMERI counter so that the PCLK doesn’t feed it any longer, and then
returns back to the FrameMgr_acquireLine() routine, which returns back to the
Exec_run() routine.

Back in Exec_run(), the FEV_ACQUIRE_LINE_COMPLETE event is processed. This
causes the FrameMgr_processLine() routine to be called. The _processLine() routine

JROBOT

JROBOT

operates based on the state of the Frame Mgr. In the “dump frame” state, it builds up the
beginning of a frame-dump packet and sends it directly to the UART. This is done,
instead of buffering it in the UIMgr’s Tx FIFO, because we want to send out this data
immediately. Next, the routine loops through and combines the corresponding “i index”
pixel sample from both the currentLineBuffer and previousLineBuffer into a single 8-bit
value where the upper nibble contains the 4-bit (green) pixel sample from the
currentLineBuffer, and the lower nibble contains the 4-bit (blue) pixel sample from the
previousLineBuffer. This packed sample is then sent out the UART. Next, the loop
reads the “i+1 index” pixel sample values out of the currentLineBuffer and
previousLineBuffer, and performs a similar operation. But this time, it flips the samples
around so that the upper nibble contains a 4-bit (red) pixel sample from
previousLineBuffer, and the lower nibble contains the 4-bit (green) sample from
currentLineBuffer. This way, the frame dump data packet sent to the user contains
properly formatted Bayer color data, as referenced on page 28 of [1].

Once all the bytes are sent out for both the currentLineBuffer and the
previousLineBuffer, the lineCount is incremented. Since two image lines are sent out per
iteration of FrameMgr_processLine(), lineCount only counts up to 72 instead of the
expected 144 (which is the actual number of lines in an image). If lineCount hasn’t
reached 72 yet, the event FEV_PROCESS_LINE_COMPLETE is published to kick off
the acquisition of the next set of sequential dump lines after the next image frame starts.
If lineCount has reached 72, the FrameMgr returns to the “idle” state, resets lineCount
back to 0, and sends a command to the OV6620 to return to the full frame rate by setting
the 12C register address of Ox11 with a value of 0x00. After this command is sent, the
FrameMgr_processLine() routine returns back to Exec_run(), looping and waiting for a
command from the user.

7 Summary

Hopefully, this write-up provides the reader with a better understanding of how the
AVRcam works, as well as removing some of the mystique of how a real-world image
processing system operations. The source code itself is reasonably well commented, and
should be referenced to help clarify what exactly is going on as questions arise. If there
are additional questions regarding the system, post them to:

http://www.jrobot.net/Forums.

Thanks again to John Sosoka for funding this write-up, and allowing me to share it with
others. Good luck with the Pleo!

JROBOT

http://www.jrobot.net/Forums

JROBOT

JROBOT

	1Introduction
	1.1Overview
	1.2Scope

	2Initialization
	2.1Files involved:
	2.2Description
	2.2.1AVR Tiny12 Initialization
	2.2.2AVR mega8 Initialization

	3Event Loop and Processing
	3.1Files Involved:
	3.2Description

	4User Interface
	4.1Files Involved:
	4.2Description

	5Color Tracking Logic
	5.1Files Involved:
	5.2Description

	6Frame Dumping Logic
	6.1Files Involved:
	6.2Description

	7Summary

